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I. Introduction

Wave turbulence is a common feature of nonlinear wave motions observed when

external forcing acts during along period  of time, resulting in developed spectral cascades

of energy, momentum and, possibly, other conserved integrals. In the Mean, wave

turbulence occurs on scales from capillary ripples and to those of bamfinic  inetia-~ti~

and Rossby waves.
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In general, oceanic wave motions art:  characterized by rather complicated dispersion

laws containing characteristic scales, for instance the Rossby  radius of deformation. The

resultant absence of scale invariance makes many problems of wave turbulence intractable

by standar~  small-perturbation-based techniques. As a resul~ present theoretical

understanding has been limited to short- and long-wave asymptotic regimes (Za.kharov et

al., 1992). Another, mom fundamental limitation of the small perturbation theories is the

assumption that the wave amplitude be small in relaticm to the wavelength. Thus, rare (and

highly intermittent) events of strongly nonlinear wavelets are disregarded at the outset.

A number of laboratory and field measurements reveal rather peculiar wave spectra

which cannot be explained by scale-invariant and/or weak-turbulence theories. The

peculiarities include multiple breaks of power laws and satumtion  c)f the otherwise

monotonous dependence of wave spectra on external forcing (Jfine and Riemer, 1990;

Hwartg et al, 1993; Hara et al., 1994; LeTraon et al., 1990). Furthermore, field

observations show occurrence of breaking waves in which the nonlinearity is locally very

high. In the case of wind-generated surface gravity waves, these are observed as

whitecaps. Observation of breaking events in baroclinic  inertia-gravity waves requires

measurements at a depth of the ocean thermocline  - hundred meters below the surface.

Bmdcing  waves are manifested as spots of small-scale turbulence resulting from

overturning of internal waves at the interface between two layers of different densities.

These rare events may coexist quite nicely with the generally low energy level in the wave

field. However, their effect on the overall (i.e., aver:iged  over a large time and area)

spectrum can be ~ther important.

Ilese features find a remarkably simple explanation in the framework of a recently

developed heuristic approach called “rnultiwave-interaction theory” (Glazman, 1992-95).

In what follows we rwiew the basic icleas and results, compare theoretical predictions with

experimental data for cases of capillary-gravity and baroclinic  inertia-gravity waves and

discuss possible avenues for further development of the theory.
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IL Observations of ocean wave turbulence

Until recently, the standard example of ocean wave turbulence has been that of deep-

water surface gravity waves generated by wind. Characteristic wavelengths of these

waves nmge from lm to 200 m. Earlier field observations, conducted mostly in near-

shore regions, showed the “equilibrium” range of the power spectrum as dominated by

s(o) = pg2m-5 , (1.1)

where D is a constant. This is known as the Phillips’ saturated spectrum &hillips,  1958).

The corresponding 2-d wavenumber spectrum is

F(k) = Bk+ (1.2)

where B = ~/2.  These spectra represent the regime of strong wave hmbulence:  the

equilibrium is reached due to the breaking of steep wave crests, hence due to a highly non-

local energy transfer to small scales. The wavelength of breaking waves is witl-in the range

described by (1.1)-(1.2). These spectra used to be ~egarded  as universal (Pierson and

Moskovitz, 1964; Pierson, 1991). However, later observations - at longer wind fetches -

revealed an extended range of frequencies dominated by

S((J)) = agua.1-4 (1.3)

where U is the wind speed (at 10 m height) and cx is a constant (1’oba, 1973; Forristall,

1981; Kahma, 1981; DoneIan et al., 1985). This range cm-responds to the direct cascade of

energy through the spectrum. However, the cascade is not necessarily conservative

(Phillips, 1985). In the wavenumber space, spectrum (1.3) takes the form

F(k) = Ag ‘1/2~ k-~t2 (1 .4)
I

where A = @. In terms of the energy flux, (), t}lrough the spe@rum,  (1.4) can be written

’112 1~3~-7/2 whe~>  ~ is the “Ko]mogo~v const~t.’”  ThUS, pXEdiCUOII Ofa s  F ( k ) =  A’g Q

weak turbulence theory  (Zakharov  and Filonenko,  1966) is confirmed.

Zakharov and Z&avskii  (1982) pointed to a possibility of an even flatter spectrum

based on the conservation of wave action, P, in an inverse spcctml  cascade:



4

‘  v3~-lo13F(k) = Ap P . (1.5)

This spectrum occurs at yet lower frequencies - below the “generation range.” An

experimental observation of this spectrum by Grose et al. (1972) never received much

attention in the oceanographic literature.

A detailed analysis of the gravity wave spectrum for a broad range of wave

development stages is presented in Glazman (1994) based on buoy observations. In

particular, it shows that the exponent p in I?(k)-k-p slowly grows as the wavenumber

increases away from the spectral peak. Therefore, different regimes of energy and action

flow dominate in difftmmt  subranges of the spectrum.

Another example of wave turbulence is given by capillary-gravity (CG) waves (JNme

and Riemer, 1990; F1 wang, et al., 1993; Hara, et al., 1994). “he CG spectra exhibit

pronounced “breaks” at certain scales pointing to an important role played by the intrinsic

scale (dg)l~ of the problem. Here CT is the surface tension coefficient divided by the

water density and g is the acceleration due to gravity. The CG wave spectra measured at

different wind speeds by Hwang et al. (1993) are illustrated in Fig. l(b).

Manifestation of wave turbulence in long baroclinic waves (called inertia-gravity (IG)

waves) was recently discovered by re-interpreting 1 d wavenumber spectra of sea surface

height (SSH) spatial variations on scales 10 tc) 1000 km (Glamnan, 1995(b)). Examples of

l-d SSH spectra based on satellite altimeter measurements are reported by Gordon and

Baker (1980), Fu (1983), Gaspar and Wunsch (1989), Le Traon et al., (1990; 1994) and

others. A typical spectrum is illustrated in Fig. 2.. These spectra are dramatically different

from what one would observe if SSH variations were dominated by the 2-dimensional

eddy turbulence. Indeed, according to Kraichr]anfs  (1967) prediction, the kinetic energy

spectrum of 2-d turbulence is given by k-~ ox k-sfi laws for the energy and enstrophy

cascades, respectively, Assuming geostrophy, these laws translate respectively into k-s or

k-l In spectra for SSH oscillations along altimeter ground tracks. The altimeter-observed

SSH spectra are much flatter. Besides, they exhibit spectral breaks pointing to an
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important role played by the intrinsic spatial scale, the Rossby radius of deformation,

characterizing IG wave turbulence.

III. Kinetic equations of weak-turbulence theory

Assuming wave fields to be near Ciaussian, a closed fom~ equation for second statistical

moments can be derived. by means of small-perturbation techniques (Zakharov  et al.,

1992). For a decay dispersion law - such that 3-wave interactions are resonant - the kinetic

equation is
ilN(k,t)

at
= nj[vk,~  2J~12?i(k  – kl - k2)8(m~ - q – 0)2)

+ 21V1~2ff1~2tj(k1  – k– k2)3(o+ – w~ --@2 )ldk1dk2 +y(k)~(kf) (2.1)

where N(k,t) = F(k, f) / (t.)(k) is the spectral density of wave action, F(k, t) is the spectral

density of wave energy. Vklz is the interaction coefficient for wave triads, ‘y(k) is the

growth (decay) rate due to external forcing (clissipation). Molecular viscosity corresponds

to y(k)= –2vk2.  A conservative cascade occurs when all external sources and sinks are

outside the inertial range, i.e. ~k) = O. Furthermore,

~~lz = N1N2 - N~(Nl + N2), NI = N(kl,l) (2.2)

For a non-decay dispersion law - when 3-wave intro-actions are non-resonant - the

kinetic equation (after eliminating non-resonant terms by an appropriate canonical

transformation) has the form (ZZakharov et al., 1992):
alv(k,t) = 7C

at
#@’mfhnN(k + kl - k2 - k3)Mak + q - q - C03)dk@2dk3+

+y(k)N(k,  r) (2.3)

where ~~lm = ‘ZN3(N1 + N~) ‘N~N@z  + N3) (2.4)

and T~ln  is the interaction coefficient for resonant tetrads.  Explicit expressions for Vklz

and Tkl= for various wave processes are given, for instance, by Zakharov (1984) and

Zakharov  et al. (1992). Taking into account the physical significance of the collision
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integrals in (2.1) and (2.3), these equations can be written in a more instructive form

(Phillips, 1977):

(2.5)
~iv(ktt)  + Vk . @“J = y(k)N(ktt)

at

where V~” P(”) is the divergence in the wave-vector space of the action flux due to n-wave

interactions. In the next section this form is generalhd  to account for a higher number of

resonantly interacting Fourier components.

In the simples~  scale-invariant case, the dispersion law and the interaction coefficients

am homogeneous functions of their arguments:

V(l.k,lkl,kkL)  = kmV(k, kl ,kz) T(Zk,kk1,1k2,kk3)  = Am7’(k, k1,k2,k3)  (2.6)

co(k) = aks (2.7)

It can be also shown that, regardless of the nature of the wave prcxess, m ands are related

by m=3s/2 (2.8)

Assuming the nonlinear interactions to be local in the wavenumber space, equations (2.1),

(2.3), (2.6) and (2.7) yield scaling relationships for the, chamcteristic  interaction time (the

“turnover time”):

t--1 ~ ~ ~2m for 3-wave interactions (2.9a)

t--’ 2 2m=N k for 4-wave interactions (2,9b)

The relevant small parameter in the perturbation expansion yielding cqs (2.1) and (2.3) is

& = ak where a is the characteristic wave amplitude related to N(k) by N& oc a2 / (o. It is

easy to check that equations (2.6)-(2.8) allow expressing the turnover time in terms of E:

~-.l ~ ~2 (2. 10a)

t-”’ = WE4 (2.10b)

This form remains valid for a broad class of nonlinear wave systems which are not

necessarily scale-invariant and whose degree of nonlinmu-ity  is rneasumxl  by a more general

quantity

E=u/c , (2.11)
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where u and c are characteristic particle and phase velocities at scale k, respectively. Only

in a case of deep-water waves does (2.11) recluce  to & = ak.

The ld form of (2.5) is obtained either by transforming to the frequency space

(Zakharov, 1984) or by multiplying by k and integrating over the polar angle in the 2-d

wave-vector space. This yields

amh+apfak=~v (2.12)

where ~(k,t) = ~N(k,0,f)ld3  and P(k,t) = f ~P(k,O,t)kdO
–n -.n

Similar expressions can be derived for the wave energy and momentum fluxes. If

y(k) = O, the fluxes are conservd  in the spectral cascade (Zakharov,  1984 Zakharov et

al., 1992). The steady-state inertial cascades of wave action and energy are given by

P(k) = P() a n d  Q(k) ==@ (2.13)

where Q(k) = co(k)P(k) is the energy flux.

Weak-turbulence theay is most useful for scale-invariant systems and purely inertial

cascades - when solutions of (2.13) axe given by power law functions. Departures from

(2.6) and (2.7) make the task of solving the collision iltegral  quite formidable. The quasi-

1 Gaussian assumption underling the kinetic equation, even for the lowest degree of wave

nonlinearity, disregards possible intermittence in the wave field. Moreover, the small-

perturbation approach does not allow one to explore effects of higher-order wave-wave

interactions

030 t olt... i:com = O a n d  k. ~klt...:l:k~  =0 , (2.14)

in which m >4. These interactions become highly important at least in some localized

regions of the wave flleld,  and they may lead to wave tn-caking. Duc to extreme

mathematical difficulties of accounting for scale-dependence and high-order nonlinearity, a

heuristic approach may have considerable advantages over the formal perturbation theory.

IV. Multiwave interaction approach

I
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The present approach (Glazman, 1992,1993, 1995) is based on a set of scaling

relationships which become especially obvious if introduced in the language of the

previous section.

Let us consider an inertial energy cascade. The external soume is assumed to act at

lower frequencies - outside  our inertial spectral subrange. The rate QO of energy input from

an external source, assumed to be known, equals the. rate of energy transfer down the

spectrum, hence the dissipation rate at high wavenumbers. Following the standard scaling

procedure (e.g., Frisch et al., 1978; Larraza et al. 1990), Q is related to the characteristic

time of nonlinear interactions between Fourier comllonents,  $, and to the energy, E’,

transferred fmm a cascade step j to step (j+]) :

Q= Ej/tj (3.1)

TO be more specific, one may introduce characteristic wavenumbcr  scales kj ~d kj+l

marking the (tentative) boundaries of indivickml  cascade steps. The net tmnsfer of energy

from longer waves (with characteristic wavelength 2tikj) to shorter waves (with

characteristic wavelength 2~j+ 1 ) is similar to the production of smaller eddies by unstable

large eddies in the 3-d turbulence. Following this analogy, one can introduce a constant

ratio, r, for the cascade process:

kj+l = rkj (3.2)

where r >1. A specific value of r is not required for our subsequent development.

Apparently, the energy transferred during  time ~ - in a single step of the cascade - is related

to the spectral density, F(k), of the wave energy by
kj+~

E j G \ ;G(k,e)kd%ik =: ‘;;(k)kdk (3.3)
kj –TL kj

where G(k,@)  is the 2-d “angular” spectral density and F(k) is the 2.-d energy spectrum

after integrating over all wave propagation dwctions  0. The limited width  (kj+l - kj) of a

cascade step allows one to introduce characteristic scales for all dynamical quantities at each

step j.
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provided q can be expressed as

.=tj(kj,  Ej)  , (3.4)
‘J

equation (3. 1) serves in place of the kinetic equation (2.13) to determine the energy at each

step of the cascade:

Ej = E j (Q, kj) (3.5)

The continuous spectrum, F(k), is then found by differentiating (3.3) over kj ~d using

(3.2): ilEj / kj = F(kj~)kj~2 – F(kj)kj.  u the spectrum  falls off sufficien~Y f~t with ~

increasing wavenumber, the first term in the r.h.s. becomes negligible compared to the

second term, and one can write:
l%

F(kj) = –i- ak -
Jj

(3.6)

For a special case of F(k) = k-p, this approximation is valid if

~–P+2 << ] (3.7)

Eq. (3.7) replaces a more rigorous criterion (derived in weak turbulence theory) for the

wave-wave interactions to be local  (e.g., Zakharov  et al., 1992).

In a weakly nonlinear case, the turnover time can be formally obtained by scaling the

collision integral, (2.9). However, we shall introduce this timescale  in a less formal

fashion. To this end let us notice that the nonlinearity of most wave processes is measured

by (2.11) where c=cdk.  Respectively, lowest-order nonlinear terms in deterministic

equations of motion (for properly normalized and partially-time-averagd  Fourier

amplitudes a(k,t) ti e) are of order e.2 and the subsequent temls are of order&3, ~, etc.

Ilowever,  since the kinetic equation is derived for second statistical moments (i.e., for the

wave action spectral density, N(k) =: F(k)/fo ), the equations of statistical theory are

developed in powers of &z.’ each additional Fourier component accounted for in the

interaction integral adds terms e2 times as great as a preceding tmm. Suppose we could

derive a general, closed-form equation for N(k) for an arbitrary number of rmonantly

interacting wave components. Symbolically, this equation can be written as
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~~(kt) + Vk . @ + Vk . p(a) + Vk . P(5)+... =
at

y(k)iV(k,r) (3.8)

where “partial” collision integrals V~” P(n) account for n-wave interactions (of which

resonant interactions are most important). y(k)iV(k, t) represents the external source (or

sink, or both) where y(k) is an incm,ment  (decrement) of wave growth (attenuation).

*(n–l) Weakly nonlinear waves (i.e., &<< 1) permitcollision integrals scale as C .

neglecting all collision integrals except for the f~st one. Inde@  if&= 0.1, the first

The

interaction term in (3.8) is 102 times as large as the subsequent terms. However, this is

not the case if the nonlinearity is stronger. For a weak inequality 8<1, we would have to

retain a series of terms (up to n = 6 for the case of r. = 0.5) in orcler to maintain the same

accuracy as in our example with E = 0.1. The number of “effective” terms to be retained is

thus a function of the degree  of the wave nonlinearity, E. When 8-+1,  interactions of all

orders become of comparable importance. This case of strong wave turbulence (i.e., n -+

00) results in “saturated” spectra. Larraza et al. (1990) showed that the Phillips spectrum

F(k)-k4  for deep-water gravity waves is just one example.

The appropriate characteristic time of resonant wave-wave interactions should be taken

as the slowest among all individual turnover times associated with partial fluxes. This

corresponds to the highest value of v among all “effective” collision integrals. Therefore,

the appropriate turnover time, found by scaling the tmrns in (3.8), is

t;’ ~ ~w”-a (3.9)

Expressing &in terms of the relevant parameters, nalnely  k, co and wave amplitude, a(k), or

energy Ej at a given step of the cascade, equations (3.4)-(3.6) yield the spectrum of the

wave energy. While it is intuitively clear that v should bean increasing function of the

external energy inpu~  its determination is an open issue. Some empirical and semi-

empirical models have been proposecl  (~JhZ.man,  1992, 1993, 1995(a)), and one of them is

employed in the next section.
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IV. 1. Capillmy-gravity  wave turbulence

We will first consider capilkuy-gravity  waves on deep w~ter  for which the ratio of

water particle to wave phase velocity is

&=ak (4.1)

The equi-partition  between the kinetic and potential energies allows one to express the

total wave energy as twice the potential energy:

E=2EP= Pgf 02A+- 2POJ ($%12 -“ l)dx (4,2)

Here, q–~(x,z) is the elevation of the fluid surface above the zfiromean  level, g is the

acceleration due to gravity, and o is the coefficient of surface tension divided by fluid

density p. Using the ensemble-averaged form of (4.2) we note that

< q2 >= ~Fq(k)k& a n d < (Vq2 ) >= :k7’Fq(k)kdk
o 0

. where Fn(k) is the (2-dimension@ spectral  density of surface height o~~ations  averag~

over the polar angle 0. Assuming I Vq12 <<1 (which is well justified under natuml  sea

conditions), the surface density of the wave energy is given by

[1
E = Pg~F@ 1 -t-%2 kdk (4.3)

o 1?

Obviously, the spectm  of wave energy  and surface height are related by

[1
F(k) = pgFq(k)  1 -i- ~k2

g
(4.4)

Replacing the semi-infinite integration range by a narrow spectral window one can express

Ej in terms of the characteristic wave amIJitude,  aj, for a given steP in the cascade:
kj+l

Ej

[1

=pg J Fq(k) l+:k2 kdk = pw;(l+:-k;  ) (4.5)
kj

This equation immediately yields the necessary expression for E = e(Ej,kj)  to be used in

(3.9). The dispersion law for CG waves is

(D2 =: gk + ok3 (4.6)

Let us introduce the non-dimensional wavenurnber
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K=kL (4.7)

where the intrinsic scale of the problem is

L = (6/g)lfl (4.8)

After a little algebra, eqs. (3.4)-(3.6) and (4.4) yield the power spectrum of surface height

spatial variations:

%(~)=  ~”~-(4v-’1’2)’(v-1)(’+~ 2r3’2(v-1)  “A(KV) (4.9)

where

B = a’(Q / pws)li( ‘-1)L4 , c%’= ctf?~7#2 , ~ = (ag)’/’l (4.10a)

and
2v-5 K 2

A(K,v)== 1 – –  —-
2v–7/2  1+K2

(4. 10b)

ct is a non-dimensional “Kolmogorov  constant” of proportionality. In the limits of short

and long waves, this spectrum yields Zakharov-Filonemko  (1966,1967) power laws for

capillary and gravity waves, respective] y.

Using additional expressions for Q and v as functions of wind spa equations

(4.9)-(4.10) describe the (rather complicated) shape of the C(i wave spectrum and its

dependence on external factors. Beside wind forcing, these factors include the magnitude

of the spectrum at the Iower-wavenumber boundary of the inertial subrange. By

comparing (4.9)-(4. 10) with experimental data, we find that a fwed value of v, such as v =

3 or v = 4, leads to a drastic disagreement with observations (Glazman,  1995(a)). If,

however, this effective number is allowed to increase with an increasing wind, the

agreement becomes quite reasonable.  Figure 1(a) illustrates the predicted spectrum in terms

of the “saturation function” B(k) = l#Fq(k).  We used v = co + cIU where co and c1 are

empirical coefficients found earlier (Glazman,  1995(a)).

IV.2. Inertia-gravity (IG) wave turbulence

Nonlinear shallow-water equations for a rotating fluid have the form:
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(:+u”v)u+fixu=--gv’ (4.11)

~+v. (( H+?l)u)==o

Here, U is the horizontal vebcity vector averaged over the layer depth E?, and k is the unit

vector along the Earth rotation axis. For simplicity, the Coriolis parameter is assumed to

be constant (f-plane approximation) and the gravity force g parallel to k. (In the rest of this

paper, symbol k is employed for a different purpose: it designates the wavenumber vector.

We hope this will not cause any confusion.) The nonlinear tem~s in (4. 11) become

especially important in the case of barodinic  waves. Therefore, we shall tm.at H as tie

thermocline  depth and g as the reduced gravity - implying a 1.5 layer model in which the

density of the upper layer is slightly lower than that of the (semi-infinite) lower layer. The

amplitude of the density interface oscillation, ~(x,t), may constitute an appreciable fraction

of the thermocline depth. The ocean surface plays only a passive role: its response to the

o&illations of q(x,t)  is very weak and linear and with an opposite sign (e.g., Le Blond and

Mysak,  1978). However, since the statistics of the density intcrfacc  oscillations are

identical (up to a constant of proportionality) to those. of the SS11 variations, we shall view

the spectrum of q(x,t) as the SSH spectrum.

The dispersion relationship of the corresponding linear theory is

‘ 2a2 = f -t- C~k2’  where Co = ~~ . (4. 12)

This equation forbids 3-wave  resonance. Therefore, the lowest order resonance occurs in

wave tetrads (Falkovich  and Medvedev, 1992). The intrinsic scale of the problem (the

Rossby radius of deformation) is:

R= C o / f

At high wavenumbers,  equations (4,11)

low-wavenumber  limit corresponds to inertial

(4.13)

describe non-dispersive waves, while the

(“gymscopic”)  waves. The kinetic and

potential energies of IG waves (per unit volume, per unit mass of water) are
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‘( )I U12

EK == --—
2 ’

For a narrow frequency band between kj

(4.

and kj+] , these energies can be related to the

4)

characteristic scales of the wave amplitude, aj, and wave number, kj. me energy ratio

increases with an increasing wavelength (e.g., [Gill, 1982]). The linearized theory yields
EKj 2
-—==1+––
EPj (kR)2

(4.15)

Physically, the absence of energy equi-partition  is due to the fact that the orbits of water

particles are not strictly vertical (as would be the case for pure gravity waves). Their

inclination is the greater, the larger the relative importance of the Coriolis  force. Since the

total energy is E=EK+EP,  it is useful to express both components in terms of Ej:

‘K+(1+titi7) ‘41’)

Ej (kR)2
EPj = —  

‘—

2 1+ (kl?)z

In view of (4. 16), the characteristic particle velocity at scale k is given by

( ‘-)U2(k) ~ Ej 1+ T+(M)2

Based on (4.12) the characteristic phase speed is

[)1C2 (k) = c: 1 + —-–
(ICz#

(4.17)

(4.18)

(4.19)

NOW we can express the interaction time, q, in terms of Ej, k, @(k)  ml CO:

‘j 21’2[W-~-+Jl”_2 (4.20)
_~ ~ ~oR-@K )  @

where ~.~’ (4.21)

is the non-dimensional wavenumber.  It is al so conwmient  to non-.climensionalizz  other

quantities:

&= Q(R/C;), Ej=:Ejf C~* ~(i) = F(k)/ (COR)2 (4.22)
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Witht~l given  by(4.20),  equation (3.1)can  besolvedfor  E~. Inthe non-dimensional

form, the result is

~j ~ ~l/(v-- I)z-vw)(l _ ] / ~z)-(v–w(v-l) (4.23)

where we introduced

Z=1+K2 (4.24)

According to (4.12), this variable has a simple physical interpretation: z=(6)(k)/f)2.

Equation (3.6) becomes

+

j@ a _2!Ej
dz

Z=1+K2

(4.25)

This yields the 2-d spectrum of the total wave energy:
- I/(v--l)

F(K)  = ct-Q—— Jv-7/2)/(v-  1) (Z2 _ ,)-(2v-3)/(v-  V(Z2 + 4V _ 9) (4.26)
(v -1 )

The (“Kolmogorov”)  constant, % enables us to replace sign” =” with” =”. The surface

height spectrum (i.e., the potential energy spectrum) is found based on (4.17):

(4.27)

Since the angular dependence in our 2-d spectra is forgone, the corresponding l-d

spectrum is simply ~c(K)K. The plot of this spec~m is shown in Fig. 3 for seve~.,

values of v. In the high-wavenumber limiL the spectrum behaves as K-s where s=l +l/(v-

1). Apparently, the regime of v -+ 00 corresponds to a surface which is discontinuous in

the mean square. Physically, this means that short waves make bo~s (“shocks”) and

break, and the energy cascade becomes non-local. The main oceanographic implication of

this internal wave breaking process is the production of small-scale turbulence in the ocean

thermocline  and an increased vertical mixing. Being relevant for the direct  energy cascade,

(4.26) applies to wavenumbers above the generation range. At lower wavenumbers, one

must consider the inverse cascade.

For weakly non-linear waves (when v=: 4), the kinetic equation admits an additional

physically-meaningful solution corresponding to the inverse cascade of wave action
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(I%lkovich  and Medvedev, 1992). Since it is the wave action that is conserved in the

cascade, equation (3. 1) is replaced by

Po=Nj/tj (4.28)

km+,

where Nj = J F(k)co-lkdk.  In the same fashion as before, we ultimately arrive at:
kfi

2FJ’3  #3@_ ~)_5/3
F(K) = p-=– (4.29)

The spectrum of surface height variations becomes
P~l’3 -z~3 ~zz

Fn(K) = p—3–z – @3(z – 1) (4.30)

The “Kolmogorov”  constant P is different from that appearing in (4.26). Obviously, these

two constants are related because (4.29) must merge with (4.26) at intermdlate

wavenumbers.  Figure 3 shows that the spectra merge quite smoothly (at K=l  .2) for all

values of v. In the longwave limit, (4.30) tends to tifi which describes purely inertial

oscillations whose potential energy tends to zero. Spectrum (4.30) is confirmed by

satellite-altimeter observations (Wunsch  and Stammer, 1995) on scales much greater than

the Rossby radius of deformation..

Plausible sources of baroclinic  wave energy include tidal forcing (when barotropic  tides

interact with topographic features of ocean basins), fluctuations of wind stress and

atmospheric pwssure,  and various types of instability of ocean currents, eddies, etc. In

view of a presently poor quantitative knowledge of these sources, it is difficult to suggest

any specific dependence of Qo ancl PO on external factors. Comparison of theoretical

(4.27),(4.30) and observed spectra, Figs. 2 and ?), points to a rather high degree of

nonlinearity typical for “short” (K.R >> 1) baroclinic  waves.

V. Discussion

The heuristic approach described in section 1 V enables one to analyze rather realistic

wave processes occurring in oceans, atmosphere, and other nonlinear media. At the
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present time, the most urgent task is to gain a quantitative understanding of the effective

number of interacting wave harmonics, V, as a function of the external factors.

The pment  approach can be applied to other cases of wave turbulence - such as

Rossby waves, deep-water internal waves, etc. The fact that spectra of scale-dependent

wave turbulence exhibit pronounced breaks at certain wavenumbers which are related to the

intrinsic scales of the media and are also strongly dependent on the actual degree of the

wave nonlinearity points to possible use of the theory for extracting deep-ocean parameters

from observed spectra of sea surface height. Really, SSH spectm based on satellite

measurements contain information on the ocean stratification and deep-water processes in

the thermocline  because the bamclinic Rossby radius is a function of the density gradient

while the degree of wave nonlinearity contains information about internal wave breaking,

hence vertical mixing in the thermodne.
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Fig.1. ~areticd mdexperimenml  spectia (Jf''sufiace  cuwamre''  B@) = k’$Fq(k)  for

wind speed values, U (m/see): 5.7, 7.0, 8.5 and 9.9- increasing upward.

(a) is based on equations (4.9),(4.10) and on an empirical fom~ula for v as a function of

wind: v(U) = 0.2 +0.6 U where U is in ntisec.  The energy flux is determined as Q = c Us

where the meaning and value of constant c are given in (Glazman, 1995(a)).

(b) is a subset of measurements reported by Hwang et al. (1993). (Reproduced by

courtesy of the authors).

Fig. 2. 1-dimensional spectra of surface height variat  ions observed by Topex altimeter

along satellite “ground tmcks” for mid-latitude regions. (Reproduced from (Le Traon et

al., 1994) by courtesy of the authors).

Fig. 3. Non-dimensional spectra of surface height variations, K ~n(K). Equation (4.30)

is used for K <1.2.  Equation (4.27) is used for K >1.2,  for several values of the

effective number of resonantly interacting Fourier harmonics, v, M designated at the

curves.
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